NSLS-II Planning Workshop: Earth and Environmental Sciences

Soft x-ray scanning transmission microscopy

Holger Fleckenstein Stony Brook University

STXM at NSLS X1A

X1 A Shared Beamline

X1A M0

 X-ray beam shared for simultaneous operation of 3 end stations

X1 Undulator

- Undulator gap controlled by OpCo's upon agreement between X1A and X1B
- ideal: dedicated automatic scanning undulator

4th Generation Microscope

 Feser, Jacobsen et al., Stony Brook

 Motorized sample and detector platforms

 Sealed, helium-filled chamber: makes E>400 eV

5th Generation Upgrade

Fast, high resolution scanning necessary

- Differential laser interferometer provides relative position information at 0.3nm resolution
- Automatic position correction in closed feedback loop
- Upgrade of scan and data acquisition electronics

Soft X-ray Spectromicroscopy

- Images with 30nm spatial resolution (~10nm focal spot with conventional zone plates thinkable)
- Series of images over a spectroscopically interesting energy range (~0.1eV resolution)
- Complex data (~10⁵ XANES spectra)
 ☑ need for sophisticated analysis methods
- Specimen must be stable over ~100 images
 ☐ cryo preservation

Can be combined with:

- Tomography for 3D chemical speciation!
 Johansson et al., J. Synch. Rad. 14, 395 (2007) at ALS
- Luminescence of quantum dot labels for pre-selected proteins (under development)

• ...

Cluster Analysis of Clostridium Sp.

- reveals endospores and intracellular structure (Gillow and Francis)
- cluster analysis, or unsupervised pattern recognition. Lerotic et al., Ultramicroscopy 100, 35 (2005).

Non-negative Matrix Factorization

Wood sample in comparison to reference spectra collected from pure components (wood, LR White Resin, lignin and cellulose)

NMF: Fleckenstein et al. (unpublished)

data: Huntsman/Michette

reference, NMF, residual

User Demand

- STXM under high demand at NSLS; very high demand at ALS; new facilities at SLS; under development at Shanghai, Soleil, Diamond, Australia, BESSY II...
- Present NSLS users mostly from earth and environmental science (Schäfer, Brandes, Christl ...) as well as biology
- User suggested improvements:
 - beam stability / low noise
 - □ faster data collection
 ☑ brightness, motors, detectors, electronics
 - wider energy range (~200-2000eV)
 - high spatial and energy resolution
 - further automation of data acquisition
 - rotatable sample
 - fluorescence capabilities ...

Detectors

- Proportional counter
- Phosphor with PMT (ALS STXM)
- Segmented integrating silicon detector
 - For differential phase contrast and dark field imaging
 - High quantum efficiency (>90%)
 - M. Feser et al. (Stony Brook)
- Future requirements:
 - high count rates to match higher flux
 - high vacuum compatibility
 - visible light detectors for luminescence studies

Silica spheres < 1mm

Focusing Optics

- Multilayer Laue lenses
 - hard X-rays only (absorption)
 - difficult to tune (Bragg condition)
- Fresnel lenses
 - limited use for soft X-rays (absorption)
 - chromatic aberration ~ E²
- Fresnel zone plates
 - first order limit at about 10nm (high aspect ratio)
 - third order possible (with high enough flux)
- High resolution mirrors
 - limit about 10nm below 1keV (Ni or Pt, single-bounce)

Cryo Preservation

High resolution and flux call for preservation techniques for radiation sensitive samples

After warmup in microscope: holes indicate irradiated regions!

----- 7 μm

Frozen hydrated fibroblast after exposing several regions to ~10¹⁰ Gray

Maser et al., *J. Micros.* **197**, 68 (2000)

STXM at NSLS-II

- Room temperature system at "coherent soft x-ray beamline"
 - atmospheric pressure
 - wet specimens
- System at undulator beamline with cryo capabilities
 - For bio, soft matter, and organic environmental science
 - 100% access
 - Fix location allows for more routine use of complicated system
 - Cryo system for x-ray microscopes under development by Xradia
- Easy transfer of specimens between various instruments (room temperature as well as cryo transfer)
- Sample preparation lab
 - wet cells
 - automatic cryo plunger and high pressure freezer
 - (cryo) ultramicrotome
 - (cryo) light microscope (preselection and quality check)
 - lab x-ray source (check for ice crystallization diffraction rings)

Cryo and XANES

LN₂ temp: protection against mass loss and shrinkage, but not against breaking bonds (at least C=0 bond in dry PMMA)

Beetz and Jacobsen, J. Synchrotron Radiation 10, 280 (2003)

PMMA at room, LN2 temperature

- PMMA: poly methyl methacrylate (plexiglass!) which is especially radiation sensitive – it's used as a resist for electron beam lithography
- Repeated sequence: dose (small square), spectrum (defocused beam). Low dose, larger area image at end.

Room temperature: mass loss immediately visible

LN2 temperature: no mass loss immediately visible

After warm-up: mass loss becomes visible

Beetz and Jacobsen, J. Synchrotron Radiation 10, 280 (2003)

Spatial Analysis of Nitrogen Forms

Forest Oxisol (Kenya)

J. Lehmann et al. (Cornell)